Трактовка закона ома. Все виды законов ома

25.06.2022

Немецкий физик Георг Симон Ом (1787-1854) открыл основной закон электрической цепи.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I - сила тока (в системе СИ измеряется - Ампер)
    • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    • Формула: I=\frac{U}{R}
  2. U - напряжение (в системе СИ измеряется - Вольт)

      Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.

      Формула: U=IR

  3. R - электрическое сопротивление (в системе СИ измеряется - Ом).
    • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
    • Формула R=\frac{U}{I}

Определение единицы сопротивления - Ом

1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1(Вольт) протекает ток 1 (Ампер) .

Закон Ома для полной цепи

Определение: Сила тока в цепипропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

Формула I=\frac{\varepsilon}{R+r}

  • \varepsilon - ЭДС источника напряжения, В ;
  • I - сила тока в цепи, А ;
  • R - сопротивление всех внешних элементов цепи, Ом ;
  • r - внутреннее сопротивление источника напряжения, Ом .

Как запомнить формулы закона Ома

Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

Соберем электрическую цепь (рисунок 1, а ), состоящую из аккумулятора 1 напряжением в 2 В, рычажного реостата 2 , двух измерительных приборов – вольтметра 3 и амперметра 4 и соединительных проводов 5 . Установим в цепи при помощи реостата сопротивление, равное 2 Ом. Тогда вольтметр, включенный на зажимы аккумулятора, покажет напряжение в 2 В, а амперметр, включенный последовательно в цепь, покажет ток, равный 1 А. Увеличим напряжение до 4 В путем включения другого аккумулятора (рисунок 1, б ). При том же сопротивлении в цепи – 2 Ом – амперметр покажет уже ток 2 А. Аккумулятор напряжением 6 В изменит показание амперметра до 3 А (рисунок 1, в ). Сведем наши наблюдения в таблицу 1.

Рисунок 1. Изменение тока в электрической цепи путем изменения напряжения при неизменном сопротивлении

Таблица 1

Зависимость тока в цепи от напряжения при неизменном сопротивлении

Отсюда можно сделать вывод, что ток в цепи при постоянном сопротивлении тем больше, чем больше напряжение этой цепи, причем ток будет увеличиваться во столько раз, во сколько раз увеличивается напряжение.

Теперь в такой же цепи поставим аккумулятор с напряжением 2 В и установим при помощи реостата сопротивление в цепи, равное 1 Ом (рисунок 2, а ). Тогда амперметр покажет 2 А. Увеличим реостатом сопротивление до 2 Ом (рисунок 2, б ). Показание амперметра (при том же напряжении цепи) будет уже 1 А.

Рисунок 2. Изменение тока в электрической цепи путем изменения сопротивления при неизменном напряжении

При сопротивлении в цепи 3 Ом (рисунок 2, в ) показание амперметра будет 2/3 А.

Результат опыта сведем в таблицу 2.

Таблица 2

Зависимость тока в цепи от сопротивления при неизменном напряжении

Отсюда следует вывод, что при постоянном напряжении ток в цепи будет тем больше, чем меньше сопротивление этой цепи, причем ток в цепи увеличивается во столько раз, во сколько раз уменьшается сопротивление цепи.

Как показывают опыты, ток на участке цепи прямо пропорционален напряжению на этом участке и обратно пропорционален сопротивлению того же участка. Эта зависимость известна под названием закон Ома.

Если обозначим: I – ток в амперах; U – напряжение в вольтах; r – сопротивление в омах, то закон Ома можно представить формулой:

то есть ток на данном участке цепи равен напряжению на этом участке, деленному на сопротивление того же участка.

Видео 1. Закон Ома для участка цепи

Пример 1. Определить ток, который будет проходить по нити лампы накаливания, если нить имеет неизменное сопротивление 240 Ом, а лампа включена в сеть с напряжением 120 В.

Пользуясь формулой закона Ома, можно определить также напряжение и сопротивление цепи.

U = I × r ,

то есть напряжение цепи равно произведению тока на сопротивление этой цепи и

то есть сопротивление цепи равно напряжению, деленному на ток цепи.

Пример 2. Какое нужно напряжение, чтобы в цепи с сопротивлением 6 Ом протекал ток 20 А?

U = I × r = 20 × 6 = 120 В.

Пример 3. По спирали электрической плитки протекает ток в 5 А. Плитка включена в сеть с напряжением 220 В. Определить сопротивление спирали электрической плитки.

Если в формуле U = I × r ток равен 1 А, а сопротивление 1 Ом, то напряжение будет равно 1 В:

1 В = 1 А × 1 Ом.

Отсюда заключаем: напряжение в 1 В действует в цепи с сопротивлением 1 Ом при токе в 1 А.

На рисунке 3 приведена электрическая цепь, состоящая из аккумулятора, сопротивления r и длинных соединительных проводов, имеющих свое определенное сопротивление.

Как видно из рисунка 3, вольтметр, присоединенный к зажимам аккумулятора, показывает 2 В. Уже в середине линии вольтметр показывает только 1,9 В, а около сопротивления r напряжение равно всего 1,8 В. Такое уменьшение напряжения вдоль цепи между отдельными точками этой цепи называется потерей (падением) напряжения.

Потеря напряжения вдоль электрической цепи происходит потому, что часть приложенного напряжения расходуется на преодоление сопротивления цепи. При этом потеря напряжения на участке цепи будет тем больше, чем больше ток и чем больше сопротивление этого участка цепи. Из закона Ома для участка цепи следует, что потеря напряжения в вольтах на участке цепи равно току в амперах, протекающему по этому участку, умноженному на сопротивление в омах того же участка:

U = I × r .

Пример 4. От генератора, напряжение на зажимах которого 115 В, электроэнергия передается электродвигателю по проводам, сопротивление которых 0,1 Ом. Определить напряжение на зажимах двигателя, если он потребляет ток в 50 А.

Очевидно, что на зажимах двигателя напряжение будет меньше, чем на зажимах генератора, так как в линии будет потеря напряжения. По формуле определяем, что потеря напряжения равна:

U = I × r = 50 × 0,1 = 5 В.

Если в линии потеря напряжения равна 5 В, то напряжение у электродвигателя будет 115 – 5 = 110 В.

Пример 5. Генератор дает напряжение 240 В. Электроэнергия по линии из двух проводов длиной по 350 м, сечением 10 мм² передается к электродвигателю, потребляющему ток в 15 А. Требуется узнать напряжение на зажимах двигателя.

Напряжение на зажимах двигателя будет меньше напряжения генератора на величину потери напряжения в линии. Потеря напряжения в линии U = I × r .

Так как сопротивление r проводов неизвестно, определяем его по формуле:

"); длина l равна 700 м, так как току приходится идти от генератора к двигателю и оттуда обратно к генератору.

Подставляя r в формулу, получим:

U = I × r = 15 × 1,22 = 18,3 В

Следовательно, напряжение на зажимах двигателя будет 240 – 18,3 = 221,7 В

Пример 6. Определить поперечное сечение алюминиевых проводов, которое необходимо применить, чтобы подвести электрическую энергию к двигателю, работающему при напряжении в 120 В и токе в 20 А. Энергия к двигателю будет подаваться от генератора напряжением 127 В по линии длиной 150 м.

Находим допустимую потерю напряжения:

127 – 120 = 7 В.

Сопротивление проводов линии должно быть равно:

Из формулы

определим сечение провода:

где ρ – удельное сопротивление алюминия (таблица 1, в статье "Электрическое сопротивление и проводимость ").

По справочнику выбираем имеющееся сечение 25 мм².
Если ту же линию выполнить медным проводом, то сечение его будет равно:

где ρ – удельное сопротивление меди (таблица 1, в статье "Электрическое сопротивление и проводимость ").

Выбираем сечение 16 мм².

Отметим еще, что иногда приходится умышленно добиваться потери напряжения, чтобы уменьшить величину приложенного напряжения.

Пример 7. Для устойчивого горения электрической дуги требуется ток 10 А при напряжении 40 В. Определить величину добавочного сопротивления, которое нужно включить последовательно с дуговой установкой, чтобы питать ее от сети с напряжением 120 В.

Потеря напряжения в добавочном сопротивлении составит:

120 – 40 = 80 В.

Зная потерю напряжения в добавочном сопротивлении и ток, протекающий через него, можно по закону Ома для участка цепи определить величину этого сопротивления:

При рассмотрении электрической цепи мы до сих пор не принимали в расчет того, что путь тока проходит не только по внешней части цепи, но также и по внутренней части цепи, внутри самого элемента, аккумулятора или другого источника напряжения.

Электрический ток, проходя по внутренней части цепи, преодолевает ее внутреннее сопротивление и потому внутри источника напряжения также происходит падение напряжения.

Следовательно, (э. д. с.) источника электрической энергии идет на покрытие внутренних и внешних потерь напряжения в цепи.

Если обозначить E – электродвижущую силу в вольтах, I – ток в амперах, r – сопротивление внешней цепи в омах, r 0 – сопротивление внутренней цепи в омах, U 0 – внутреннее падение напряжения и U – внешнее падение напряжения цепи, то получим, что

E = U 0 + U = I × r 0 + I × r = I × (r 0 + r ),

Это и есть формула закона Ома для всей (полной) цепи. Словами она читается так: ток в электрической цепи равен электродвижущей силе, деленной на сопротивление всей цепи (сумму внутреннего и внешнего сопротивлений).

Видео 2. Закон Ома для полной цепи

Пример 8. Электродвижущая сила E элемента равна 1,5 В, его внутреннее сопротивление r 0 = 0,3 Ом. Элемент замкнут на сопротивление r = 2,7 Ом. Определить ток в цепи.

Пример 9. Определить э. д. с. элемента E , замкнутого на сопротивление r = 2 Ом, если ток в цепи I = 0,6 А. Внутреннее сопротивление элемента r 0 = 0,5 Ом.

Вольтметр, включенный на зажимы элемента, покажет напряжение на них, равное напряжению сети или падению напряжения во внешней цепи.

U = I × r = 0,6 × 2 = 1,2 В.

Следовательно, часть э. д. с. элемента идет на покрытие внутренних потерь, а остальная часть – 1,2 В отдается в сеть.

Внутреннее падение напряжения

U 0 = I × r 0 = 0,6 × 0,5 = 0,3 В.

Так как E = U 0 + U , то

E = 0,3 + 1,2 =1,5 В

Тот же ответ можно получить, если воспользоваться формулой закона Ома для полной цепи:

E = I × (r 0 + r ) = 0,6 × (0,5 +2) = 1,5 В.

Вольтметр, включенный на зажимы любого источника э. д. с. во время его работы, показывает напряжение на них или напряжение сети. При размыкании электрической цепи ток по ней проходить не будет. Ток не будет проходить также и внутри источника э. д. с., а следовательно, не будет и внутреннего падения напряжения. Поэтому вольтметр при разомкнутой цепи покажет э. д. с. источника электрической энергии.

Таким образом, вольтметр, включенный на зажимы источника э. д. с. показывает:
а) при замкнутой электрической цепи – напряжение сети;
б) при разомкнутой электрической цепи – э. д. с. источника электрической энергии.

Пример 10. Электродвижущая сила элемента 1,8 В. Он замкнут на сопротивление r =2,7 Ом. Ток в цепи равен 0,5 А. Определить внутреннее сопротивление r 0 элемента и внутреннее падение напряжения U 0 .

Так как r = 2,7 Ом, то

r 0 = 3,6 – 2,7 = 0,9 Ом;

U 0 = I × r 0 = 0,5 × 0,9 = 0,45 В.

Из решенных примеров видно, что показание вольтметра, включенного на зажимы источника э. д. с., не остается постоянным при различных условиях работы электрической цепи. При увеличении тока в цепи увеличивается также внутреннее падение напряжения. Поэтому при неизменной э. д. с. на долю внешней сети будет приходиться все меньшее и меньшее напряжение.

В таблице 3 показано, как меняется напряжение электрической цепи (U ) в зависимости от изменения внешнего сопротивления (r ) при неизменных э. д. с. (E ) и внутреннем сопротивлении (r 0) источника энергии.

Таблица 3

Зависимость напряжения цепи от сопротивления r при неизменных э. д. с. и внутреннем сопротивлении r 0

E r 0 r U 0 = I × r 0 U = I × r
2
2
2
0,5
0,5
0,5
2
1
0,5
0,8
1,33
2
0,4
0,67
1
1,6
1,33
1

Физический закон , определяющий связь (или электрического напряжения) с силой тока , протекающего в проводнике , и сопротивлением проводника. Установлен Георгом Омом в 1826 году и назван в его честь.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига .

Если ток является синусоидальным с циклической частотой ω {\displaystyle \omega } , а цепь содержит не только активные, но и реактивные компоненты (ёмкости , индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

U = I ⋅ Z {\displaystyle \mathbb {U} =\mathbb {I} \cdot Z}
  • U = U 0 e i ωt - напряжение или разность потенциалов,
  • I - сила тока,
  • Z = Re i δ - комплексное сопротивление (электрический импеданс),
  • R = R a 2 + R r 2 - полное сопротивление,
  • R r = ωL − 1/(ωC ) - реактивное сопротивление (разность индуктивного и емкостного),
  • R а - активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (R r /R a ) - сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, U = U 0 sin ⁡ (ω t + φ) {\displaystyle U=U_{0}\sin(\omega t+\varphi)} подбором такой U = U 0 e i (ω t + φ) , {\displaystyle \mathbb {U} =U_{0}e^{i(\omega t+\varphi)},} что Im ⁡ U = U . {\displaystyle \operatorname {Im} \mathbb {U} =U.} Тогда все значения токов и напряжений в схеме надо считать как F = Im ⁡ F {\displaystyle F=\operatorname {Im} \mathbb {F} }

Все в этом мире живет и происходит по своим законам. Маугли, писателя Киплинга, жил по закону джунглей, люди живут по своим писаным законам, так и в физике электрического тока существуют свои законы и один из этих законов называется “закон Ома“. Это очень важный закон, один из основополагающих законов в физике электрического тока, и ты обязан его знать и понимать, если хочешь разбираться в электрике и электронике. Я же постараюсь помочь тебе и объясню для тебя, закон Ома простыми словами .

Впервые, закон открыл и описал в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость. В честь этого самого Георга Ома и назван закон.

Теперь давай выведем определение закона Ома.

Величина тока на участке цепи, прямо пропорциональна напряжению приложенному к этому участку цепи и обратно пропорциональна его сопротивлению. Теперь разберем эту абракадабру по частям. Часть первая - Величина тока на участке цепи, прямо пропорциональна напряжению приложенному к этому участку цепи. В принципе все понятно и логично, чем выше напряжение подключенное к цепи, тем больше ток. Вторая часть закона - и обратно пропорциональна его сопротивлению. Это означает что чем больше сопротивление на участке, тем меньше ток.

Формула закона Ома

В этой формуле - I - Сила тока (Ампер), U - Напряжение (Вольт), R - Сопротивление (Ом-).

Прикладываю к этому объяснению шуточный рисунок ты мог видеть его и раньше на других сайтах, это очень хороший “рисунок - пример” многие его используют на страницах своих сайтов.

Как найти силу тока, что такое сила тока - это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

I=U/R - формула тока

U = IR - формула напряжения

Сопротивление - если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

R = U/I - формула сопротивления

Для удобства пользования формулой можно применить такую “фишку “.

Закрывая пальцем на треугольнике, значение, которое нужно определить, видим действие, которое нужно выполнить. Например - если тебе нужно определить значение сопротивления, закроем - R


Теперь ты видишь, какое действие нужно выполнить? Правильно, напряжение U разделить на силу тока I .

Формулы, которые тебе обязательно пригодятся.

Я рассказал тебе очень кратко и простым языком о законе Ома , но этого вполне достаточно, чтобы ты смог самостоятельно на первых парах производить расчеты для своих будущих электронных шедевров!

Закон Ома, в отличие от, например, закона Кулона, это не фундаментальный закон физики. Он имеет практическое значение.
В природе существуют вещества, проводящие электрический ток - проводники и не проводящие - диэлектрики.
В проводниках есть свободные заряды – электроны. Для того, чтобы электроны начали дружно перемещаться в одном направлении, необходимо электрическое поле, которое и «заставит» их перемещаться от одного конца проводника к другому.
Простейшим образом создать поле может обыкновенная батарейка. Если на конце проводника недостаток электронов, то он знаком «+», если , то «-». Электроны, имеющие всегда отрицательный заряд, естественно, устремятся к плюсу. Так в проводнике рождается электрический ток, т. е. направленное перемещение электрических зарядов. Чтобы его увеличить, необходимо усилить электрическое поле в проводнике. Или, как говорят, приложить к концам проводника большее напряжение.
Электрический ток принято обозначать буквой I, а напряжение – буквой U.
Важно понимать, что формула R=U/I позволяет лишь вычислять сопротивление участка цепи, но не отражает зависимость сопротивления от напряжения и силы тока.

Но проводники, по которым перемещаются свободные электроны, могут иметь разное электрическое сопротивление R. Сопротивление показывает меру противодействия материала проводника прохождения по нему электрического тока. Оно зависит только от геометрических размеров, материала проводника и его температуры.
Каждая из этих величин имеет свои единицы измерения: Сила тока I измеряется в Амперах (А); Напряжение U измеряется в Вольтах (В); Сопротивление измеряется в Омах (Ом).

Закон Ома для участка цепи

В 1827 году немецкий ученый Георг Ом установил математическую связь между этими тремя величинами, и сформулировал ее словесно. Так появился закон, названный в честь его создателя законом Ома. Его полная такова: «Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи».
Чтобы не путаться в выводе производных формул, расположите величины, в треугольнике, как на рисунке 2. Закройте пальцем искомую величину. Взаимное расположение оставшихся покажет, какое действие необходимо совершить.
Формула Закона Ома имеет вид: I=U/R
Проще говоря, чем больше напряжение, тем сильнее ток, но чем больше сопротивление, тем ток слабее.